All posts by Andrea Ferrantelli

Theoretical physicist and musician. Quantum Prana, the Dark Matter Guitar.

Gear and tone matter – Know Your Gear! (cit.)

What a nice gig yesterday! Investing time, thought and money in quality equipment and effects layering (besides lots of practice!) does make a difference, performance- as well as tone-wise.

#Fender #Markbass #Two notes Audio Engineering #Walrus Audio #Darkglass Electronics #Phillip McKnight

Attached, a close-up of the accidental star of the evening.

Demogorgon, a new song.

“Ήτοι μεν πρώτιστα χάος γένετο.” (“Verily at the first Chaos came to be.”)
Hesiod (ca.750 BC), Theogonia, 116.

The opening tune of my dark progressive album “Quantum Arkanum”, featuring stoner, sludge and psychedelic elements, with some classical flavour.

Quantum Prana: guitars, bass, voices, drum programming, mixing & mastering.

Cover illustration by Gustave Doré (1832-1883).

New paper on energy data mining now published

Office Building Tenants’ Electricity Use Model for Building Performance Simulations
https://www.mdpi.com/1996-1073/13/21/5541

Abstract

Large office buildings are responsible for a substantial portion of energy consumption in urban districts. However, thorough assessments regarding the Nordic countries are still lacking. In this paper we analyse the largest dataset to date for a Nordic office building, by considering a case study located in Stockholm, Sweden, that is occupied by nearly a thousand employees. Distinguishing the lighting and occupants’ appliances energy use from heating and cooling, we can estimate the impact of occupancy without any schedule data. A standard frequentist analysis is compared with Bayesian inference, and the according regression formulas are listed in tables that are easy to implement into building performance simulations (BPS). Monthly as well as seasonal correlations are addressed, showing the critical importance of occupancy. A simple method, grounded on the power drain measurements aimed at generating boundary conditions for the BPS, is also introduced; it shows how, for this type of data and number of occupants, no more complexities are needed in order to obtain reliable predictions. For an average year, we overestimate the measured cumulative consumption by only 4.7%. The model can be easily generalised to a variety of datasets.
Keywords: building simulationoffice buildingsenergy performanceenergy modellingHVACanalytical modellingstatistical analysis

New paper on geothermal energy published

Our latest paper introduces a tabulated tool that aids in the early design of geothermal systems, by providing estimates of the system’s efficiency according to the chosen energy piles field configuration and heat pump sizing.

Direct link: https://doi.org/10.1016/j.enbuild.2020.110178

The paper can be downloaded FOR FREE for 50 days at this link:
https://www.sciencedirect.com/science/article/pii/S037877882031152X?dgcid=author

Abstract

Geothermal systems are often employed for both the heating and cooling of sustainable constructions. Energy piles (U-shaped heat exchangers inserted into the foundation piles) are widely included in these installations, whose performance is usually estimated by means of complex, time-consuming simulations already at an early design stage.
Here we propose a simple methodology, where a hand calculation tool provides the condenser yield per pile meter, ground area yield and demand covered by the heat pump by specifying only building heat load and geometric characteristics of the energy piles field. Our tool is tested by assuming 20 years of operation in a hall-type commercial building in a cold climate. A validated IDA-ICE parametric study couples the heat pump evaporator operation with heat transfer processes between energy piles and soil. Various system configurations are considered and thermal storage in the soil is included.
We find that the expected yield is not directly proportional to pile separation, while a smaller extraction power is favoured. Thermal storage in the soil is also confirmed to be critical. Besides our specific quantitative results, our practical guideline is qualitatively general and can be extended to any given building type and climate.