Special Issue on HVAC and Sustainability

View Post

Submissions are welcome for the new Special Issue at Energies MDPI where I am guest editor.

Topics: #energyefficiency #HVAC# Sustainability #IEQ #thermalcomfort and many others.

Deadline: April, 27th 2022. https://www.mdpi.com/…/Building_Sustainable_District

New paper on geothermal energy published

Our latest paper introduces a tabulated tool that aids in the early design of geothermal systems, by providing estimates of the system’s efficiency according to the chosen energy piles field configuration and heat pump sizing.

Direct link: https://doi.org/10.1016/j.enbuild.2020.110178

The paper can be downloaded FOR FREE for 50 days at this link:
https://www.sciencedirect.com/science/article/pii/S037877882031152X?dgcid=author

Abstract

Geothermal systems are often employed for both the heating and cooling of sustainable constructions. Energy piles (U-shaped heat exchangers inserted into the foundation piles) are widely included in these installations, whose performance is usually estimated by means of complex, time-consuming simulations already at an early design stage.
Here we propose a simple methodology, where a hand calculation tool provides the condenser yield per pile meter, ground area yield and demand covered by the heat pump by specifying only building heat load and geometric characteristics of the energy piles field. Our tool is tested by assuming 20 years of operation in a hall-type commercial building in a cold climate. A validated IDA-ICE parametric study couples the heat pump evaporator operation with heat transfer processes between energy piles and soil. Various system configurations are considered and thermal storage in the soil is included.
We find that the expected yield is not directly proportional to pile separation, while a smaller extraction power is favoured. Thermal storage in the soil is also confirmed to be critical. Besides our specific quantitative results, our practical guideline is qualitatively general and can be extended to any given building type and climate.

New paper published: “A novel method for calculating heat emitter and controller configuration setpoint variations with EN15316-2”.

We published a new article! Highlights of the paper, available at https://doi.org/10.1016/j.jobe.2020.101387:

  • A novel method for the accurate calculation of total setpoint variations.
  • Effects of real system losses are better represented than with component assessment
  • Simulations of annual energy consumption compare losses for new and old building.
  • A common platform to compare emission efficiency under standardised conditions.

Abstract:
Estimating heat emission losses of heating systems is an important task of energy efficiency assessments in buildings. However, the present international standards do not specify how emission losses should be calculated or measured for different emitter and control system configurations. Aiming to fill this gap, here we propose a method for computing the temperature setpoint variations by addressing the heat distribution throughout a room with space heat emitters. This general and exact procedure enables the calculation of product category-specific setpoint variations for different types of heat emitters, accounting for the overall heat balance in the enclosure and including the cross-correlations of each component. Our method complements the procedure presented in the Standard EN15316-2, making it possible to compute emission losses as product-specific values of setpoint variations instead of tabulated values. As the main finding of the study, the calculation process is defined for a European Reference Room that allows an accurate and transparent evaluation of total setpoint variations. These are computed for specific products from measured vertical stratification and control parameters, by means of an annual IDA ICE simulation model of the reference enclosure. Applying the method to an annual energy performance simulation for an old and a new building in Strasbourg shows that emission losses are compensated by a total setpoint variation of respectively up to 2.00 °C and 1.20 °C, corresponding to an increase in total heating energy usage of up to 22% and 20%.

Special Issue “Energy Performance and Indoor Climate Analysis in Buildings” available for free download

Our Special Issue with MDPI titled “Energy Performance and Indoor Climate Analysis in Buildings” (18 papers) is available for free download here: https://www.mdpi.com/books/pdfview/book/1828
#Engineering #energy #Sustainability #Science #civilengineering

Special Issue “Energy and Technical Building Systems – Scientific and Technological Advances” now published

Our special issue with @MDPIOpenAccess “Energy and Technical Building Systems – Scientific and Technological Advances” (10 papers published) is now fully and freely available in pdf at https://www.mdpi.com/journal/energies/special_issues/energy_and_built_environment #Engineering #energy #energyefficiency #Sustainability #HVAC

Sector coupling in urban districts – an opportunity towards decarbonisation

Sector coupling is a concept referring to the electrification of end-use sectors (e.g. heating and transport); it aims at increasing the share of renewable energy (solar, hydro, geothermal, wind, bioenergy, waste heat…) in these sectors.
In practice, this is a strategy “to provide greater flexibility to the energy system so that decarbonisation can be achieved in a more cost-effective way”.

The EU has committed under the Paris Agreement to make an effort to keep the global temperature rise below 2ºC, and the decarbonisation of the energy system can be crucial to this purpose. Sector coupling then becomes a key player for the EU “policy objective of shifting from our current highly centralised and mainly fossil fuel-based energy system to a more decentralised, energy efficient and renewable energy-based energy system”.

The quoted paragraphs are taken from an official European Parliament document on Sector Coupling, which you can find at the link below. I strongly encourage everybody interested in energy systems to read it (especially those who are critical towards the usage of wind and solar energy…yes, they still do exist!).
https://www.europarl.europa.eu/RegData/etudes/STUD/2018/626091/IPOL_STU(2018)626091_EN.pdf


Presentation at the Trondheim conference now available for download

A short and coincise presentation I gave in Trondheim (Norway) on 7.11.19, which summarizes the parametric study reported in the conference paper (see the link below).

https://doi.org/10.1088/1755-1315/352/1/012011

Here is the presentation:
https://www.researchgate.net/publication/337111301_Parametric_study_for_the_long_term_energetic_performance_of_geothermal_energy_piles

 

Two conference papers now published

The two conference papers on #energy efficiency in buildings I presented last May at the conference CLIMA 2019, #Bucharest are now published, with open access:

Experimental study of radiator, underfloor, ceiling and air heater systems heat emission performance in TUT nZEB test facility

Annual performance analysis of heat emission in radiator and underfloor heating systems in the European reference room.

New paper explaining the crack patterns on the surface of heated wood

Our new paper on heated wood seems to confirm our model for a phenomenon that remained unexplained for a few decades.
https://onlinelibrary.wiley.com/doi/abs/10.1002/fam.2722?af=R

Abstract:

When a flat sample of medium density fibreboard (MDF) is exposed to radiant heat in an inert atmosphere, primary crack patterns suddenly start to appear over the entire surface before pyrolysis and any charring occurs. Contrary to common belief that crack formation is due to drying and shrinkage, it was demonstrated for square samples that this results from thermomechanical instability. In the present paper, new experimental data are presented for circular samples of the same MDF material. The sample was exposed to radiant heating at 20 or 50 kW/m2, and completely different crack patterns with independent eigenmodes were observed at the two heat fluxes. We show that the two patterns can be reproduced with a full 3‐D thermomechanical surface instability model of a hot layer adhered to an elastic colder foundation in an axisymmetric domain. Analytical and numerical solutions of a simplified 2‐D formulation of the same problem provide excellent qualitative agreement between observed and calculated patterns. Previous data for square samples, together with the results reported in the present paper for circular samples, confirm the validity of the model for qualitative predictions and indicate that further refinements can be made to improve its quantitative predictive capability.

New research paper on geothermal energy now published

Our paper discussing the usage of geothermal energy for heating buildings is now published. You can download the full version from the publisher at the following webpage:

https://www.mdpi.com/1996-1073/12/5/770