New paper on geothermal energy published

Our latest paper introduces a tabulated tool that aids in the early design of geothermal systems, by providing estimates of the system’s efficiency according to the chosen energy piles field configuration and heat pump sizing.

Direct link: https://doi.org/10.1016/j.enbuild.2020.110178

The paper can be downloaded FOR FREE for 50 days at this link:
https://www.sciencedirect.com/science/article/pii/S037877882031152X?dgcid=author

Abstract

Geothermal systems are often employed for both the heating and cooling of sustainable constructions. Energy piles (U-shaped heat exchangers inserted into the foundation piles) are widely included in these installations, whose performance is usually estimated by means of complex, time-consuming simulations already at an early design stage.
Here we propose a simple methodology, where a hand calculation tool provides the condenser yield per pile meter, ground area yield and demand covered by the heat pump by specifying only building heat load and geometric characteristics of the energy piles field. Our tool is tested by assuming 20 years of operation in a hall-type commercial building in a cold climate. A validated IDA-ICE parametric study couples the heat pump evaporator operation with heat transfer processes between energy piles and soil. Various system configurations are considered and thermal storage in the soil is included.
We find that the expected yield is not directly proportional to pile separation, while a smaller extraction power is favoured. Thermal storage in the soil is also confirmed to be critical. Besides our specific quantitative results, our practical guideline is qualitatively general and can be extended to any given building type and climate.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s