New paper explaining the crack patterns on the surface of heated wood

Our new paper on heated wood seems to confirm our model for a phenomenon that remained unexplained for a few decades.
https://onlinelibrary.wiley.com/doi/abs/10.1002/fam.2722?af=R

Abstract:

When a flat sample of medium density fibreboard (MDF) is exposed to radiant heat in an inert atmosphere, primary crack patterns suddenly start to appear over the entire surface before pyrolysis and any charring occurs. Contrary to common belief that crack formation is due to drying and shrinkage, it was demonstrated for square samples that this results from thermomechanical instability. In the present paper, new experimental data are presented for circular samples of the same MDF material. The sample was exposed to radiant heating at 20 or 50 kW/m2, and completely different crack patterns with independent eigenmodes were observed at the two heat fluxes. We show that the two patterns can be reproduced with a full 3‐D thermomechanical surface instability model of a hot layer adhered to an elastic colder foundation in an axisymmetric domain. Analytical and numerical solutions of a simplified 2‐D formulation of the same problem provide excellent qualitative agreement between observed and calculated patterns. Previous data for square samples, together with the results reported in the present paper for circular samples, confirm the validity of the model for qualitative predictions and indicate that further refinements can be made to improve its quantitative predictive capability.

New research paper on geothermal energy now published

Our paper discussing the usage of geothermal energy for heating buildings is now published. You can download the full version from the publisher at the following webpage:

https://www.mdpi.com/1996-1073/12/5/770

Paper on energy efficiency in buildings now published

Our paper “A combined analytical model for increasing the accuracy of heat emission predictions in rooms heated by radiators” is now published on the Journal of Building Engineering. Here is the link to the pdf (free download for the next 50 days):

https://www.sciencedirect.com/science/article/pii/S235271021831413X?dgcid=author

Abstract:

The efficiency of heat emitters plays an important role in the improvement of building energy performance, especially in the context of system and product comparison. In particular, it can be directly related to thermal comfort via the operative temperature that is effectively sensed by the users.
For the first time in the literature, in this paper we develop a combined analytical model for room and radiator that computes directly the heat output required to maintain a specific operative temperature. The total heat balance of the enclosure is used to accurately quantify and compare the heat emission losses of different radiator types via an analytical calculation of the operative temperature. This determines the efficiency of a selection of panel radiators with different surface temperature, radiation fraction and number of panels, which were tested in a chamber conforming to the EN 442-2 standard.
Additionally, we assess the related annual energy consumption in different climates by carrying out annual simulations in old (without heat recovery) and new (with heat recovery) building types located in Tallinn, Estonia and Strasbourg, France. In the new building we find a similar performance for all the radiators. In the old building however, one radiator outperforms the other two with up to 1.38% lower annual energy consumption, due to smaller rear losses and higher thermal comfort provided by the larger front panel surface.