

Analytical modelling and prediction formulas for domestic hot water consumption

ANDREA FERRANTELLI, PhD
TALLINN UNIVERSITY OF TECHNOLOGY, ESTONIA

TALLINN UNIVERSITY OF
TECHNOLOGY

This talk is based on

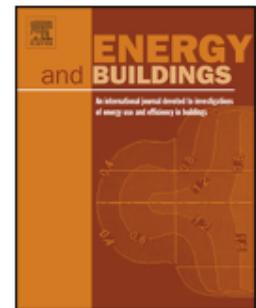
Energy and Buildings 143 (2017) 53–60

ELSEVIER

Contents lists available at [ScienceDirect](#)

Energy and Buildings

journal homepage: www.elsevier.com/locate/enbuild



Analytical modelling and prediction formulas for domestic hot water consumption in residential Finnish apartments

Andrea Ferrantelli ^{a,b,*}, Kaiser Ahmed ^a, Petri Pylsy ^c, Jarek Kurnitski ^{a,b}

^a Aalto University, Department of Civil Engineering, P.O. Box 12100, FI-00076 Aalto, Finland

^b Tallinn University of Technology, Faculty of Civil Engineering, Estonia

^c The Finnish Real Estate Federation, Finland

MOTIVATION

- ▶ Domestic Hot Water (**DHW**) in any type of building is used for food preparation, sanitation and personal hygiene.

MOTIVATION

- ▶ Domestic Hot Water (**DHW**) in any type of building is used for food preparation, sanitation and personal hygiene.
- ▶ DHW heating is the **second largest source of energy use** after space heating in the building sector: 20% of the total domestic consumption in the UK, 13% in Germany.

MOTIVATION

- ▶ Domestic Hot Water (**DHW**) in any type of building is used for food preparation, sanitation and personal hygiene.
- ▶ DHW heating is the **second largest source of energy use** after space heating in the building sector: 20% of the total domestic consumption in the UK, 13% in Germany.
- ▶ Knowledge of the true consumption patterns is **crucial to avoid** improper sizing of DHW heating systems (=> **high costs**), e.g. as a tool for dedicated **simulation programs**.

THE CHALLENGE

- ▶ **Many variables involved**: occupant number, lifestyle, social and economic conditions, climate etc

THE CHALLENGE

- ▶ **Many variables involved**: occupant number, lifestyle, social and economic conditions, climate etc
- ▶ Daily and hourly data are **highly fluctuated**:
 - the daily consumption per person depends on the country: e.g. 43 liters in Finland, 33 l in Sweden
 - this occurs also for the hourly consumption pattern: higher during the morning in Germany, during the evening in Finland

THE CHALLENGE

- ▶ **Many variables involved**: occupant number, lifestyle, social and economic conditions, climate etc
- ▶ Daily and hourly data are **highly fluctuated**:
 - the daily consumption per person depends on the country: e.g. 43 liters in Finland, 33 l in Sweden
 - this occurs also for the hourly consumption pattern: higher during the morning in Germany, during the evening in Finland
- ▶ **Different load** on weekdays, weekends and during different months

THE CHALLENGE

- ▶ **Many variables involved**: occupant number, lifestyle, social and economic conditions, climate etc
- ▶ Daily and hourly data are **highly fluctuated**:
 - the daily consumption per person depends on the country: e.g. 43 liters in Finland, 33 l in Sweden
 - this occurs also for the hourly consumption pattern: higher during the morning in Germany, during the evening in Finland
- ▶ **Different load** on weekdays, weekends and during different months
- ▶ **Previous studies**: stochastic bottom-up models, probabilistic models, seasonal and social probability, end user questionnaires, daily usage of appliances... **many variables needed!**

THE CHALLENGE

- ▶ **Many variables involved**: occupant number, lifestyle, social and economic conditions, climate etc
- ▶ Daily and hourly data are **highly fluctuated**:
 - the daily consumption per person depends on the country: e.g. 43 liters in Finland, 33 l in Sweden
 - this occurs also for the hourly consumption pattern: higher during the morning in Germany, during the evening in Finland
- ▶ **Different load** on weekdays, weekends and during different months
- ▶ **Previous studies**: stochastic bottom-up models, probabilistic models, seasonal and social probability, end user questionnaires, daily usage of appliances... **many variables needed!**
- ▶ **Not always successful** (sometimes consumption overestimation up to 70%)

OUTLINE OF THE TALK

- In this talk we will briefly outline an analytical bottom-up method to model DHW consumption accurately.

OUTLINE OF THE TALK

- ▶ In this talk we will briefly outline an **analytical bottom-up method to model DHW consumption accurately**.
- ▶ By knowing only **i) number of occupants**, and **ii) their DHW consumption**, therefore a minimal set of data*, we can:

* This is actually somehow in line with today's plenary lecture by Prof. Cochrane

OUTLINE OF THE TALK

- ▶ In this talk we will briefly outline an analytical bottom-up method to model DHW consumption accurately.
- ▶ By knowing only i) number of occupants, and ii) their DHW consumption, therefore a minimal set of data*, we can:
- ▶ 1) derive the correlations between occupant groups and different seasons => **MAIN TREND OF CONSUMPTION**

* This is actually somehow in line with today's plenary lecture by Prof. Cochrane

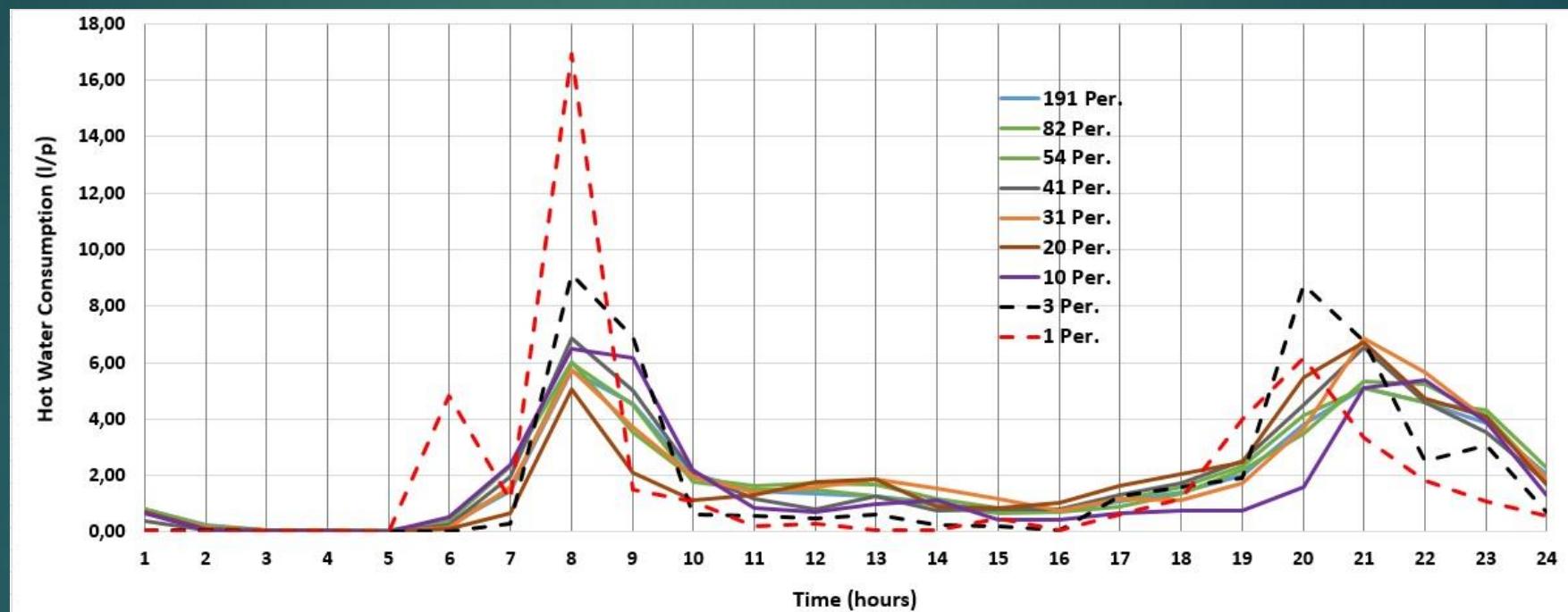
OUTLINE OF THE TALK

- ▶ In this talk we will briefly outline an analytical bottom-up method to model DHW consumption accurately.
- ▶ By knowing only i) number of occupants, and ii) their DHW consumption, therefore a minimal set of data*, we can:
 - ▶ 1) derive the correlations between occupant groups and different seasons => **MAIN TREND OF CONSUMPTION**
 - ▶ 2) generate a **PREDICTIVE FORMULA** for the DHW consumption of unknown occupant groups.

* This is actually somehow in line with today's plenary lecture by Prof. Cochrane

METHOD, PRELIMINARIES: FIT THE DATA

- DHW consumption data for November, Weekdays (WD) [1]:

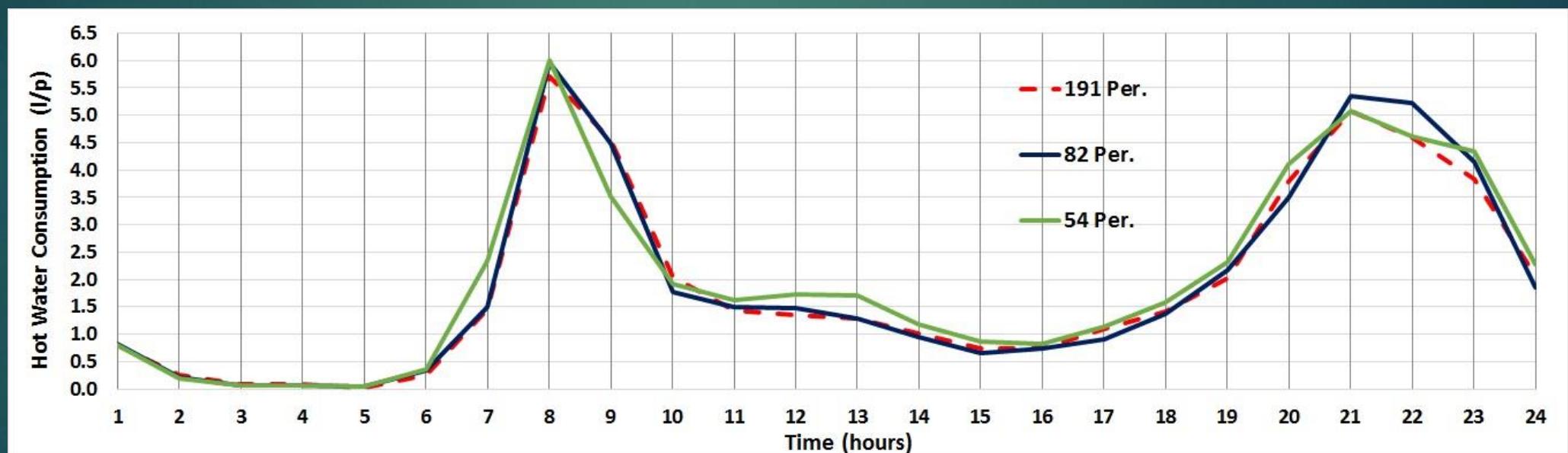


► Fig.1

[1] K. Ahmed, P. Pylsy, J. Kurnitski. Hourly consumption profiles of domestic hot water for different occupant groups in dwellings, Sol. Energy 137(2016) 516-530

METHOD, PRELIMINARIES: IDENTIFY TRENDS

- ▶ **Common pattern:** for >50 occupants only one curve is needed! No qualitative difference, and the Total consumption is very similar.



▶ Fig.2

METHOD, PT.1: THE STRUCTURAL CURVE

- ▶ Choose the most representative fit for the whole dataset, satisfying three selection requirements (in order of importance):

METHOD, PT.1: THE STRUCTURAL CURVE

- ▶ Choose the most representative fit for the whole dataset, satisfying three selection requirements (in order of importance):
- ▶ i) Qualitative: the maxima (or peaks) location is consistent with the average trend of the datasets. It should also share a common pattern (Fig.2). The **54** and **82** persons datasets satisfy both.

METHOD, PT.1: THE STRUCTURAL CURVE

- ▶ Choose the most representative fit for the whole dataset, satisfying three selection requirements (in order of importance):
- ▶ i) Qualitative: the maxima (or peaks) location is consistent with the average trend of the datasets. It should also share a common pattern (Fig.2). The **54** and **82** persons datasets satisfy both.
- ▶ ii) Quantitative: the summed consumption is the closest to the overall average (here the **82p** dataset gives $E82=46.60 \text{ l/p}$ vs $Eave=47.30 \text{ l/p}$).

METHOD, PT.1: THE STRUCTURAL CURVE

- ▶ **Choose the most representative fit for the whole dataset**, satisfying three selection requirements (in order of importance):
- ▶ i) **Qualitative**: the maxima (or peaks) location is consistent with the average trend of the datasets. It should also share a common pattern (Fig.2). The **54** and **82** persons datasets satisfy both.
- ▶ ii) **Quantitative**: the summed consumption is the closest to the overall average (here the **82p** dataset gives $E82=46.60 \text{ l/p}$ vs $Eave=47.30 \text{ l/p}$).
- ▶ iii) **Applicative**: enough occupants to be representative of a real case.

METHOD, PT.1: THE STRUCTURAL CURVE

- ▶ **Choose the most representative fit for the whole dataset**, satisfying three selection requirements (in order of importance):
- ▶ i) **Qualitative**: the maxima (or peaks) location is consistent with the average trend of the datasets. It should also share a common pattern (Fig.2). The **54** and **82** persons datasets satisfy both.
- ▶ ii) **Quantitative**: the summed consumption is the closest to the overall average (here the **82p** dataset gives $E82=46.60 \text{ l/p}$ vs $Eave=47.30 \text{ l/p}$).
- ▶ iii) **Applicative**: enough occupants to be representative of a real case.
- ▶ The corresponding dataset will be called **structural dataset**.

METHOD, PT.1: THE STRUCTURAL CURVE

- ▶ Let us then choose 82p as the structural dataset.

METHOD, PT.1: THE STRUCTURAL CURVE

- ▶ Let us then choose **82p as the structural dataset**.
- ▶ Interpolate the data for 82 persons in November, WD
[2]: use a **constrained least square method** (i.e. with a consumption constraint to minimize the difference between observed and fitted values)

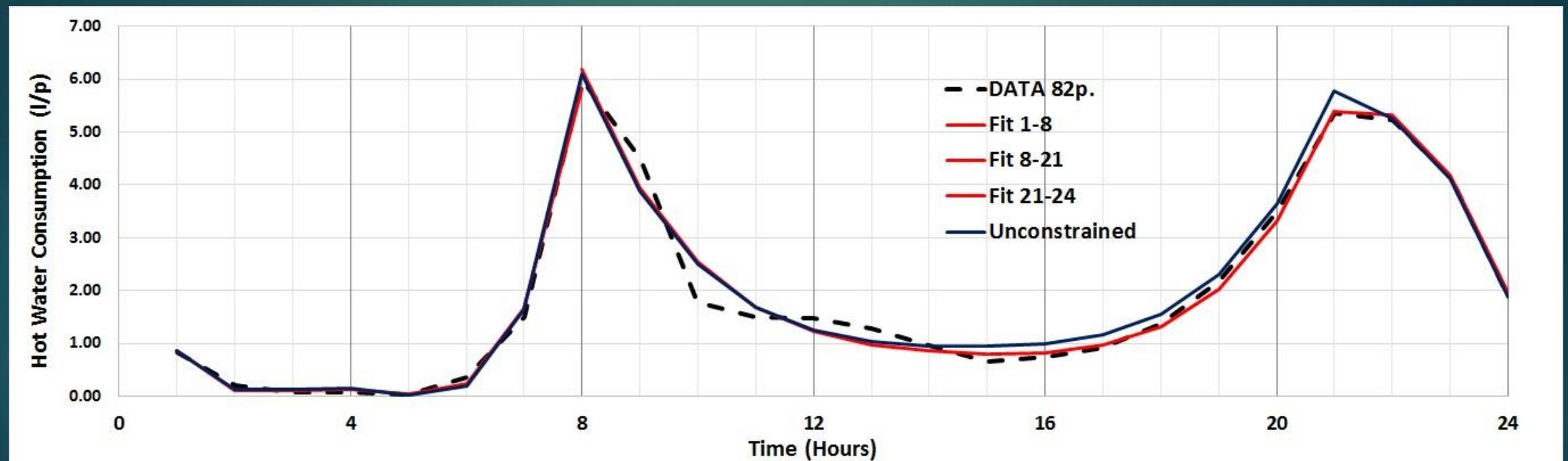
[2] R core team. R: A Language and Environment for Statistical Computing. R Foundation, Vienna, Austria.

METHOD, PT.1: THE STRUCTURAL CURVE

- ▶ Let us then choose **82p as the structural dataset**.
- ▶ Interpolate the data for 82 persons in November, WD [2]: use a **constrained least square method** (i.e. with a consumption constraint to minimize the difference between observed and fitted values)
- ▶ **Energy (or consumption) difference:**
 $E82=45.055 \text{ l/p}$ vs $E82\text{fit} = 45.065 \text{ l/p} \Rightarrow \underline{\%(\Delta E)=0.22\%}$
(without the consumption constraint, $\%(\Delta E)=3.7\%$)

[2] R core team. R: A Language and Environment for Statistical Computing. R Foundation, Vienna, Austria.

METHOD, PT.1: THE STRUCTURAL CURVE



To avoid a large propagation of errors, it is critical to obtain the most precise fit (structural curve) we can!

METHOD, PT.2: THE STRUCTURAL FORMULA

- ▶ Compute correlations between each and every dataset with the structural dataset 82p.

METHOD, PT.2: THE STRUCTURAL FORMULA

- ▶ Compute correlations between each and every dataset with the structural dataset 82p.
- ▶ Each fit curve **for n occupants** can be thus written in function of the structural curve $E_{82}(t)$ as

$$E_n(t) = f_n[E_{82}(t)] = A(n) + B(n)E_{82}(t)$$

Let us call the above the structural formula.

METHOD, PT.3: THE STRUCTURAL COEFFICIENTS

- 1) Compute $A(n)$ and $B(n)$, the *structural coefficients* in the **structural formula** $E_n(t) = A(n) + B(n)E_{82}(t)$:

$$E_{10}(t) = 0.02158 + 1.10392E_{82}(t),$$

$$E_{31}(t) = -0.04761 + 0.97903E_{82}(t) \dots t[h] \in [1, 8)$$

$$E_{10}(t) = -0.5662 + 1.1279E_{82}(t),$$

$$E_{31}(t) = 0.16737 + 0.99834E_{82}(t) \dots t[h] \in [8, 21)$$

$$E_{10}(t) = -0.82974 + 1.146E_{82}(t),$$

$$E_{31}(t) = -0.6951 + 1.2794E_{82}(t) \dots t[h] \in [21, 24).$$

METHOD, PT.3: THE STRUCTURAL COEFFICIENTS

- 2) Then interpolate $A(n)$ and $B(n)$ as $f(n)$ [2]:

November WD

1–8

$$A(n) = 0.2336 - 0.02984n + 8.43 \times 10^{-4}n^2 - 6.268 \times 10^{-6}n^3$$

$$B(n) = 1.358 - 0.03694n + 9.171 \times 10^{-4}n^2 - 6.346 \times 10^{-6}n^3$$

8–21

$$A(n) = -1.471 + 0.1243n - 2.494 \times 10^{-3}n^2 + 1.462 \times 10^{-5}n^3$$

$$B(n) = 1.276 - 0.02183n + 3.954 \times 10^{-4}n^2 - 2.081 \times 10^{-6}n^3$$

21–24

$$A(n) = 0.1427 - 0.1341n + 4.909 \times 10^{-3}n^2 - 4.016 \times 10^{-5}n^3$$

$$B(n) = 0.66 + 0.06384n - 1.944 \times 10^{-3}n^2 + 1.482 \times 10^{-5}n^3$$

[2] R core team. R: A Language and Environment for Statistical Computing. R Foundation, Vienna, Austria.

METHOD, PT.3: THE STRUCTURAL COEFFICIENTS

- ▶ 3) Finally, substitute $A(n)$ and $B(n)$ in the structural formula $E_n(t) = A(n) + B(n)E82(t)$ for any unknown n .

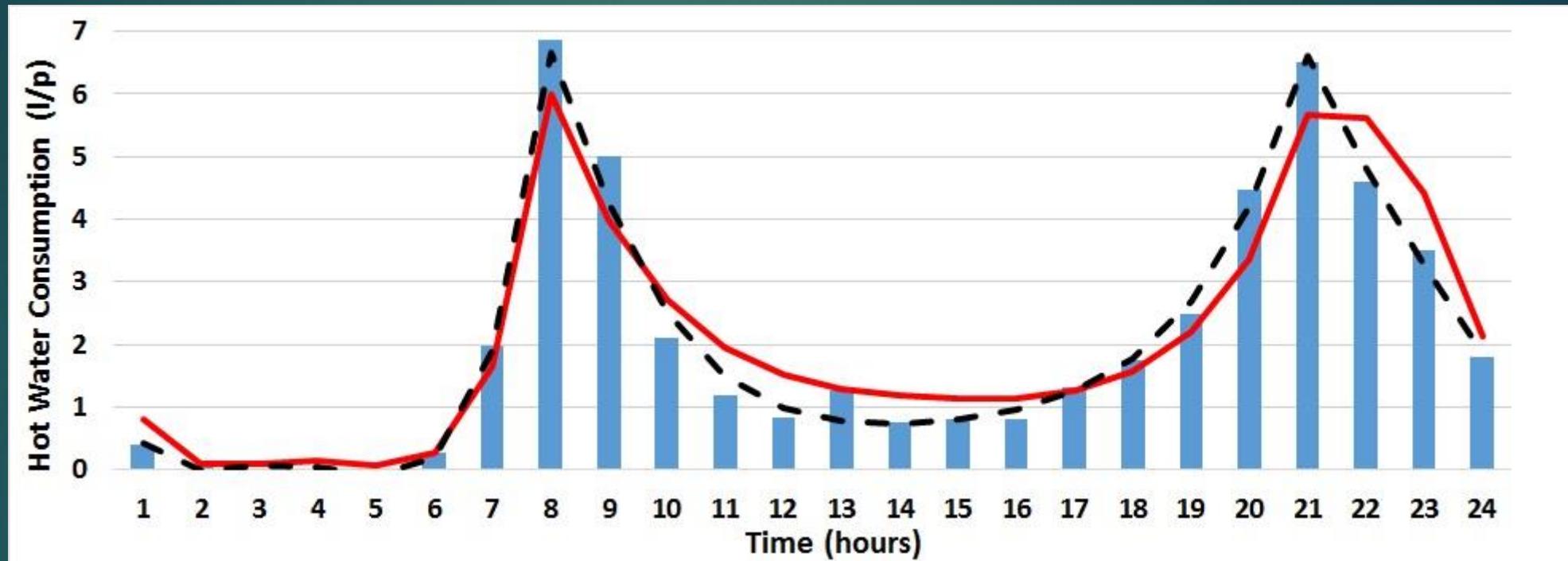
METHOD, PT.3: THE STRUCTURAL COEFFICIENTS

- ▶ 3) Finally, substitute $A(n)$ and $B(n)$ in the structural formula $E_n(t) = A(n) + B(n)E_{82}(t)$ for any unknown n .

For $n=41$, an unknown dataset, $E_{41}(t) = A(41) + B(41)E_{82}(t) =$

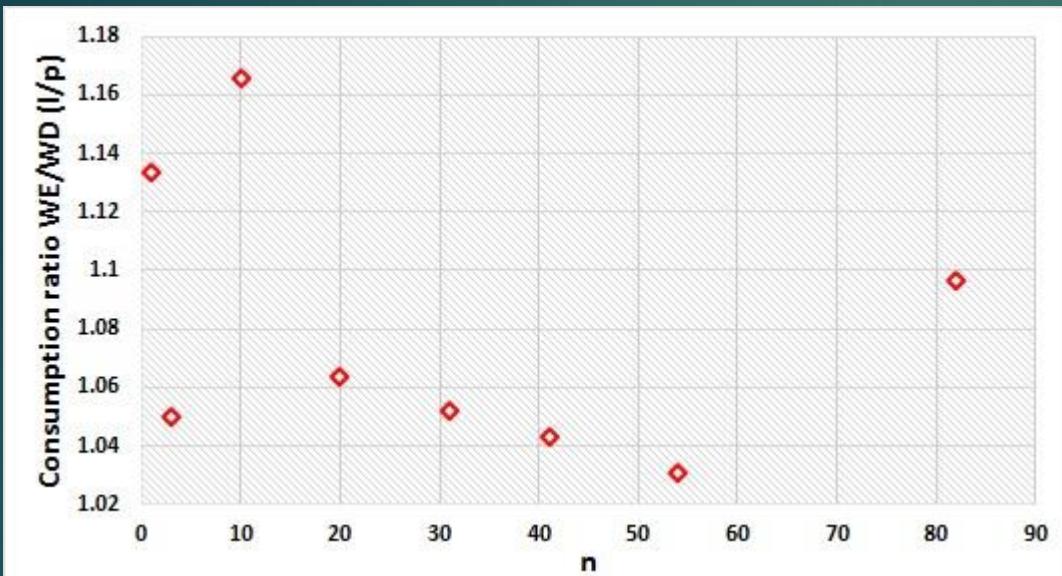
$$E_{41}(t) = \begin{cases} -0.004753828 + 0.947732E_{82}(t), & 1 \leq t[h] < 8 \\ 0.440511 + 0.902213E_{82}(t), & 8 \leq t[h] < 21 \\ 0.128762 + 1.030985E_{82}(t). & 21 \leq t[h] < 24 \end{cases}$$

VALIDATION: UNKNOWN DATASET

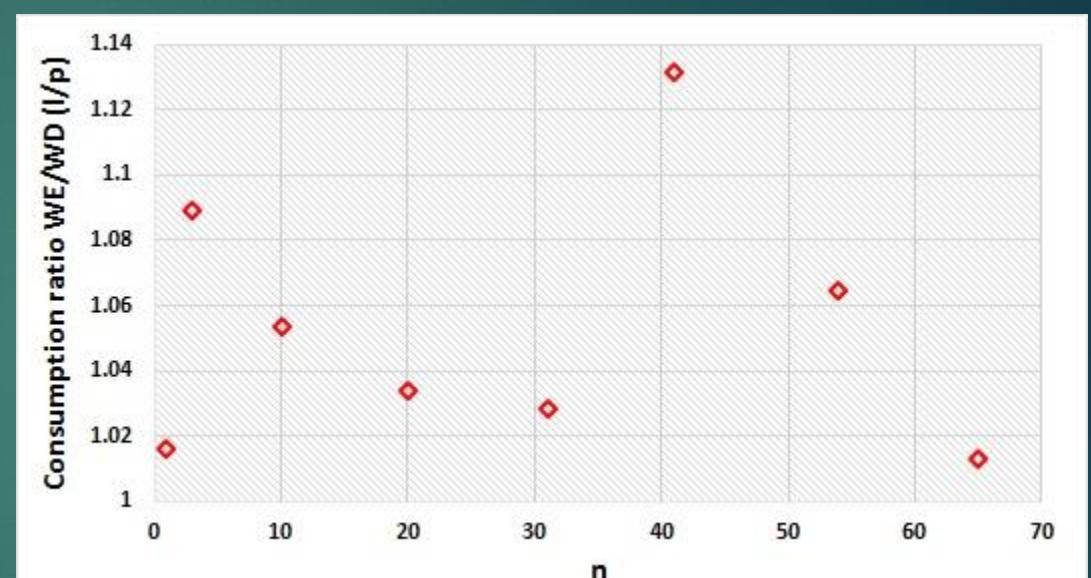


- ▶ $n=41$, `data=columns`, `fit=dashed`, `model prediction=solid`.
- ▶ **Energy difference Data vs Prediction~2.3%**

EXTRA: CORRELATION WD VS WE



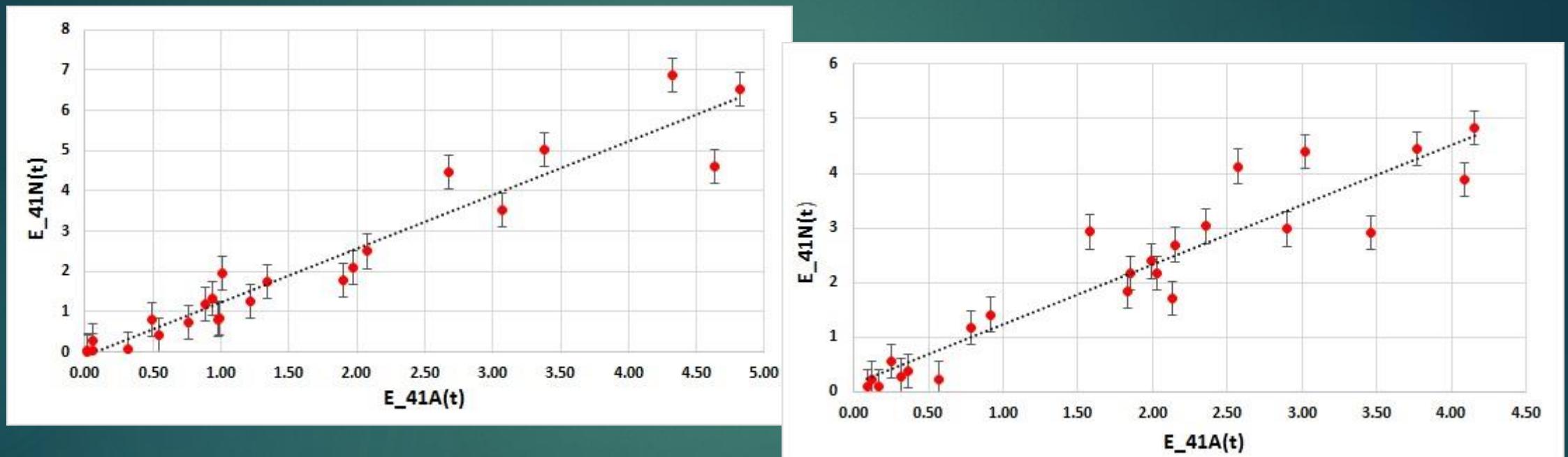
November



August

► No evident correlation between weekday and weekend

CORRELATION NOVEMBER VS AUGUST



- $n=41$, Weekdays (left) and Weekends (right)
- Linear correlation! Standard errors 0.4196 & 0.313

CORRELATION NOVEMBER VS AUGUST

$$E_{41N}(t) = -0.09454 + 1.33133E_{41A}(t), \text{ WD}$$

$$E_{41N}(t) = 0.1447 + 1.0929E_{41A}(t), \text{ WE}$$

- ▶ Hourly consumption for **41p**, N=November, A=August
- ▶ Possible to correlate different seasons with a simple formula!

CONCLUSIONS AND PERSPECTIVES

- In this talk we have discussed an analytical bottom-up (or *inductive*) method for modelling DHW consumption:

CONCLUSIONS AND PERSPECTIVES

- ▶ In this talk we have discussed an analytical bottom-up (or *inductive*) method for modelling DHW consumption:
- ▶ 1) **choose** a structural dataset (SD), representative of an average trend common to all (or most) datasets

CONCLUSIONS AND PERSPECTIVES

- ▶ In this talk we have discussed an analytical bottom-up (or inductive) method for modelling DHW consumption:
- ▶ 1) **choose** a structural dataset (SD), representative of an average trend common to all (or most) datasets
- ▶ 2) **compute** linear correlations between the fit for the SD and those for the other datasets => structural coefficients

CONCLUSIONS AND PERSPECTIVES

- ▶ In this talk we have discussed an analytical bottom-up (or inductive) method for modelling DHW consumption:
- ▶ 1) **choose** a structural dataset (SD), representative of an average trend common to all (or most) datasets
- ▶ 2) **compute** linear correlations between the fit for the SD and those for the other datasets => structural coefficients
- ▶ 3) **interpolate** the structural coefficients to predict the hourly consumption for unknown datasets.

CONCLUSIONS AND PERSPECTIVES

- ▶ **RESULTS:**
- ▶ DHW consumption for different user groups is **linearly correlated**

CONCLUSIONS AND PERSPECTIVES

- ▶ **RESULTS:**
- ▶ DHW consumption for different user groups is linearly correlated
- ▶ Accurate prediction of hourly DHW consumption for any unknown dataset and for different seasons (linearly correlated)

CONCLUSIONS AND PERSPECTIVES

- ▶ **RESULTS:**
- ▶ DHW consumption for different user groups is linearly correlated
- ▶ Accurate prediction of hourly DHW consumption for any unknown dataset and for different seasons (linearly correlated)
- ▶ **APPLICATIONS OF THE METHOD:**
- ▶ Immediate implementation into simulation tools for energy investigations and heating sizing in Finland

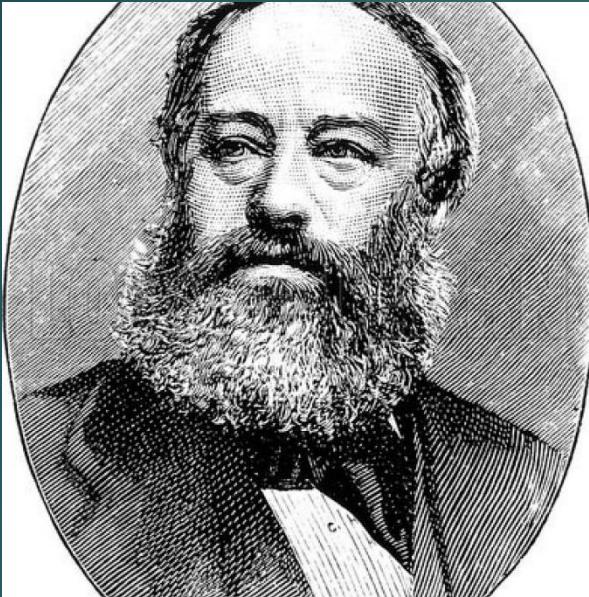
CONCLUSIONS AND PERSPECTIVES

- ▶ **RESULTS:**
- ▶ DHW consumption for different user groups is linearly correlated
- ▶ Accurate prediction of hourly DHW consumption for any unknown dataset and for different seasons (linearly correlated)
- ▶ **APPLICATIONS OF THE METHOD:**
- ▶ Immediate implementation into simulation tools for energy investigations and heating sizing in Finland
- ▶ Straightforward application to other countries

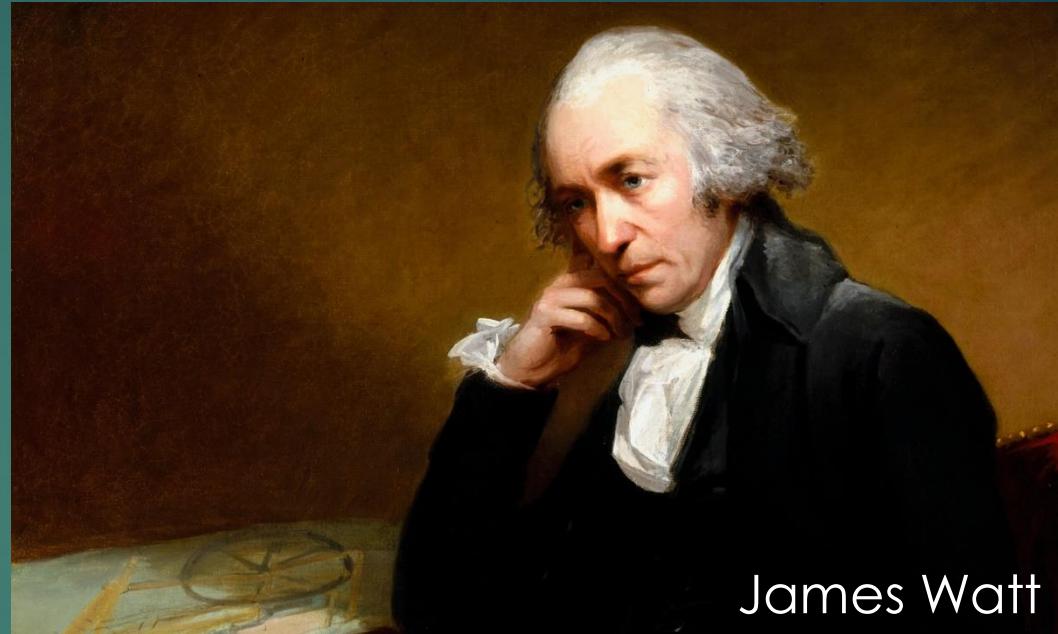
CONCLUSIONS AND PERSPECTIVES

- ▶ **RESULTS:**
- ▶ DHW consumption for different user groups is **linearly correlated**
- ▶ **Accurate prediction** of hourly DHW consumption **for any unknown dataset** and **for different seasons** (linearly correlated)
- ▶ **APPLICATIONS OF THE METHOD:**
- ▶ Immediate implementation **into simulation tools** for energy investigations and heating sizing in Finland
- ▶ Straightforward **application to other countries**
- ▶ Possible **generalization to other engineering contexts**: this method is all about **identifying underlying patterns!**

THANK YOU FOR YOUR ATTENTION!



James P. Joule



James Watt

- ▶ A. Ferrantelli, K. Ahmed, P. Pylsy, J. Kurnitski. *Analytical modelling and prediction formulas for domestic hot water consumption in residential Finnish apartments.* **Energy and Buildings 143, 53-60**
- ▶ **Andrea Ferrantelli**, PhD
- ▶ Tallinn University of Technology, Tallinn, Estonia
- ▶ **Email:** andrea.ferrantelli@ttu.ee

Appendix: MEASUREMENTS AND PROFILES

- ▶ Data: DHW consumption datasets for 86 Finnish apartments located in a single building in Tampere, during one year. Total of 191 occupants, with supply water temperature 55C [1].
- ▶ Hourly profile for each apartment in a day: average consumption of the apartment a at the hour t

$$v_{t,a} = \frac{\sum_1^n v_{t,a,n}}{N} \quad [\text{L}]$$

with n number of days and N total number of days in a month. The hourly average consumption for a single user is

$$v_{t,a,o} = \frac{v_{t,a}}{O_a} \quad [\text{L/p}]$$

[1] K. Ahmed, P. Pylysy, J. Kurnitski, Hourly consumption profiles of domestic hot water for different occupant groups in dwellings, Sol. Energy 137(2016) 516-530